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Model Accuracy FLOPs 2x FLOPs to
7 S gain <4%
ResNet18 69.76% 1.8 billion ¢ accuracy
ResNet34 . 73.31% 3.6 billion ) 1.75x FLOPs
MobileNetv1 70.6% 569 million fo gain <2%
accuracy
MobileNetv1 0.75 68.4% 325 million
= 2.2x FLOPs
Inception v2 78.00% 7.0 billion a0 b gain <2%
° accuracy
Inception v4 . 80.2 16.0 billion

e Diminishing returns to adding more FLOPs. Double the
computation for 2% accuracy gain.

e Can we only enable the neurons required for each image
sample?

e \We propose a dynamic inference method to compute different
sub-network based on the input samples. Each layer is
equipped by a decision gate to select few filters to apply
per sample.
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Key Contributions

Typical dynamic inference training rely on regularization loss to
learn the decision gating.

Regularization loss can be hard to tune as pruning ratio increases
due to multi-loss (i.e task and regularization loss) gradient
interference.

In this paper, we propose:

e A novel decision gating loss formulation with self-supervised
ground truth mask generation that is stochastic gradient
descent (SGD) friendly and decoupled from task loss.

e A novel dynamic sighature based on the heatmap mass
without a pre-defined pruning ratio per layer.
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o Self-Supervised Binary Gating
- Our proposed method learns the dynamic decision gating in a self-supervised way.
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- During training, we rank layer’s output features and push the decision gating to predict the top-k
highly activated features. Top-k is selected based on a hyperparameter r.

- During inference, we use the binary prediction output from the learned decision gate to perform
handful of filters from the layer based on the input.
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ImageNet
Method Dynamic? Top-1 Acc. (%) FLOPs red. (%)
Baseline Pruned Delta
Taylor [34] N 7331 7283 048 22.25
LCCL [6] Y 7342 7299 043 24.80
FTWT (r = 0.97) Y 7330 7325 0.05 25.86
FTWT (r = 0.95) Y 7330 7279 051 3777 2
x FLOP
ResNet34 SFP [13] N 7392 71.83 209 41.10 p t.o S
FPGM [14] N 73.92 7254 138 41.10 reauction in
FTWT (r = 0.93) Y 7330 7217 113 47.42 ResNet34
ResNet18 [12] N 7330  69.76  3.54 50.04 g
FTWT (r = 0.92) Y 7330 7171 1.59 52.24
PFP-B [24] N ; . . :
SFP [13] N 7028  67.10 3.18 41.80
ResNet18 LCCL [6] Y 69.98 6633 3.65 34.60 1.7x FLOPs
FBS [10] Y 7070 6820 2.50 49.49\, reduction in
FTWT (- = 0.91) Y 69.76 6749 227 51.56 | MobileNetv1
. MobileNetV1-75 [16] N 69.76  67.00 276 42.85
MobileNetV1  pprp (- = 1) Y 69.57  69.66 -0.09 41.07

* Compare with the motivation

We discuss more in our paper on:

Decoupled vs joint training.

Selection of hyperparameterr.
Out-of-distribution tests.

Challenges and limitations with latency reduction.
Code is available at: https://github.com/selkerdawy/FTWT

:L“.l-:.-
O



https://github.com/selkerdawy/FTWT

