
Fire Together Wire Together: A Dynamic Pruning Approach with  Self-Supervised Mask Prediction
Sara Elkerdawy(1), Mostafa Elhoushi(2),Hong Zhang(1), Nilanjan Ray(1)

1) Department of Computing Science, University of Alberta , 2) Toronto Heterogeneous Compilers Lab, Huawei

ResultsProposed Method (FTWT)Motivation
Model Accuracy FLOPs
ResNet18 69.76% 1.8 billion

ResNet34 73.31% 3.6 billion

MobileNetv1 70.6% 569 million

MobileNetv1 0.75 68.4% 325 million

Inception v2 78.00% 7.0 billion

Inception v4 80.2 16.0 billion

2x FLOPs to 
gain <4% 
accuracy

1.75x FLOPs 
to gain <2% 

accuracy

2.2x FLOPs 
to gain <2% 

accuracy

● Diminishing returns to adding more FLOPs. Double the 
computation for ≈2% accuracy gain.

● Can we only enable the neurons required for each image 
sample?

● We propose a dynamic inference method to compute different 
sub-network based on the input samples. Each layer is 
equipped by a decision gate to select few filters to apply 
per sample.
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Key Contributions  

Typical dynamic inference training rely on regularization loss to 
learn the decision gating. 

Regularization loss can be hard to tune as pruning ratio increases 
due to multi-loss (i.e task and regularization loss) gradient 
interference.

In this paper, we propose:
● A novel decision gating loss formulation with self-supervised 

ground truth mask generation that is stochastic gradient 
descent (SGD) friendly and decoupled from task loss.

● A novel dynamic signature based on the heatmap mass 
without a pre-defined pruning ratio per layer.
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● Self-Supervised Binary Gating
- Our proposed method  learns the dynamic decision gating in a self-supervised way.

- During training, we rank layer’s output features and push the decision gating to predict the top-k 
highly activated features. Top-k is selected based on a hyperparameter r.

- During inference, we use the binary prediction output from the learned decision gate to perform 
handful of filters from the layer based on the input.

● Loss Function

● Top-k Filters (Rank features block)
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2x FLOPs 
reduction in 
ResNet34

1.7x FLOPs 
reduction in 
MobileNetv1

* Compare with the motivation

MobileNet - CIFAR

Select k
k=index(cumsum > r)

Cumulative
Sum

Normalize
acts = acts 
/ sum(acts)
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Sort
descendingly

r is a hyperparameter ∈ [0,1]
r=1 → select all filters that have GMP>0 
(i.e. drop filters that do not activate any 

pixel)
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We discuss more in our paper on:
- Decoupled vs joint training.
- Selection of hyperparameter r.
- Out-of-distribution tests.
- Challenges and limitations with latency reduction.
Code is available at: https://github.com/selkerdawy/FTWT

https://github.com/selkerdawy/FTWT

